References

Balota, D. A., Yap, M. J., Hutchison, K. A., Cortese, M. J., Kessler, B., Loftis, B., Neely, J. H., Nelson, D. L., Simpson, G. B., & Treiman, R. (2007). The English lexicon project. Behavior Research Methods, 39(3), 445–459. https://doi.org/10.3758/bf03193014
Bates, D., Maechler, M., Bolker, B. M., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
Bouchet-Valat, M., & Kamiński, B. (2023). DataFrames.jl: Flexible and fast tabular data in Julia. Journal of Statistical Software, 107(4), 1–32. https://doi.org/10.18637/jss.v107.i04
Box, G. E. P. (1950). Problems in the analysis of growth and wear curves. Biometrics, 6(4), 362. https://doi.org/10.2307/3001781
Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society: Series B (Methodological), 26(2), 211–243. https://doi.org/10.1111/j.2517-6161.1964.tb00553.x
Box, G. E. P., & Tiao, G. C. (1973). Bayesian inference in statistical analysis. Addison-Wesley.
Danisch, S., & Krumbiegel, J. (2021). Makie.jl: Flexible high-performance data visualization for Julia. Journal of Open Source Software, 6(65), 3349. https://doi.org/10.21105/joss.03349
Davies, O. L., & Goldsmith, P. L. (Eds.). (1972). Statistical methods in research and production (4th ed.). Hafner.
Davis, C. S. (2002). Statistical methods for the analysis of repeated measurements. In Springer Texts in Statistics (pp. xxiv + 415). New York, NY: Springer. https://doi.org/10.1007/b97287
Elston, R. C., & Grizzle, J. E. (1962). Estimation of time-response curves and their confidence bands. Biometrics, 18, 148–159. https://doi.org/10.2307/2527453
Harper, F. M., & Konstan, J. A. (2016). The MovieLens datasets. ACM Transactions on Interactive Intelligent Systems, 5(4), 1–19. https://doi.org/10.1145/2827872
Huq, N. M., & Cleland, J. (1990). Bangladesh fertility survey 1989 (main report). National Institute of Population Research; Training.
Kamiński, B. (2023). Julia for data analysis. Manning.
Pinheiro, J. C., & Bates, D. M. (2000). Mixed-effects models in S and S-Plus (pp. xvi + 528). New York, NY: Springer. https://doi.org/10.1007/b98882
Powell, M. J. (2009). The BOBYQA algorithm for bound constrained optimization without derivatives. Cambridge NA Report NA2009/06, University of Cambridge, Cambridge, 26.
Rasbash, J., Browne, W., Goldstein, H., Yang, M., & Plewis, I. (2000). A user’s guide to MLwiN. Multilevel Models Project, Institute of Education, University of London.
Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods (2nd ed.). Sage.
Sakamoto, Y., Ishiguro, M., & Kitagawa, G. (1986). Akaike information criterion statistics (p. 290). Reidel.
Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.
Tierney, L., & Kadane, J. B. (1986). Accurate approximations for posterior moments and marginal densities. Journal of the American Statistical Association, 81(393), 82–86. https://doi.org/10.1080/01621459.1986.10478240
Wickham, H. (2011). The split-apply-combine strategy for data analysis. Journal of Statistical Software, 40(1), 1–29. https://doi.org/10.18637/jss.v040.i01

This page was rendered from git revision 57a0584 .