Balota, D. A., Yap, M. J., Hutchison, K. A., Cortese, M. J., Kessler,
B., Loftis, B., Neely, J. H., Nelson, D. L., Simpson, G. B., &
Treiman, R. (2007). The
English lexicon project.
Behavior Research Methods,
39(3), 445–459.
https://doi.org/10.3758/bf03193014
Bates, D., Maechler, M., Bolker, B. M., & Walker, S. (2015). Fitting
linear mixed-effects models using lme4.
Journal of Statistical
Software,
67(1), 1–48.
https://doi.org/10.18637/jss.v067.i01
Bouchet-Valat, M., & Kamiński, B. (2023). DataFrames.jl: Flexible
and fast tabular data in
Julia.
Journal of Statistical
Software,
107(4), 1–32.
https://doi.org/10.18637/jss.v107.i04
Box, G. E. P. (1950). Problems in the analysis of growth and wear
curves.
Biometrics,
6(4), 362.
https://doi.org/10.2307/3001781
Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations.
Journal of the Royal Statistical Society: Series B
(Methodological),
26(2), 211–243.
https://doi.org/10.1111/j.2517-6161.1964.tb00553.x
Box, G. E. P., & Tiao, G. C. (1973). Bayesian inference in
statistical analysis. Addison-Wesley.
Danisch, S., & Krumbiegel, J. (2021). Makie.jl: Flexible
high-performance data visualization for
Julia.
Journal
of Open Source Software,
6(65), 3349.
https://doi.org/10.21105/joss.03349
Davies, O. L., & Goldsmith, P. L. (Eds.). (1972). Statistical
methods in research and production (4th ed.). Hafner.
Davis, C. S. (2002). Statistical methods for the analysis of repeated
measurements. In
Springer Texts in Statistics (pp. xxiv + 415).
New York, NY: Springer.
https://doi.org/10.1007/b97287
Elston, R. C., & Grizzle, J. E. (1962). Estimation of time-response
curves and their confidence bands.
Biometrics,
18,
148–159.
https://doi.org/10.2307/2527453
Harper, F. M., & Konstan, J. A. (2016). The
MovieLens
datasets.
ACM Transactions on Interactive Intelligent
Systems,
5(4), 1–19.
https://doi.org/10.1145/2827872
Huq, N. M., & Cleland, J. (1990). Bangladesh fertility survey
1989 (main report). National Institute of Population Research;
Training.
Kamiński, B. (2023). Julia for data analysis. Manning.
Pinheiro, J. C., & Bates, D. M. (2000).
Mixed-effects models in
S and S-Plus (pp. xvi + 528). New York,
NY: Springer.
https://doi.org/10.1007/b98882
Powell, M. J. (2009). The BOBYQA algorithm for bound constrained
optimization without derivatives. Cambridge NA Report NA2009/06,
University of Cambridge, Cambridge, 26.
Rasbash, J., Browne, W., Goldstein, H., Yang, M., & Plewis, I.
(2000). A user’s guide to MLwiN. Multilevel Models
Project, Institute of Education, University of London.
Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear
models: Applications and data analysis methods (2nd ed.). Sage.
Sakamoto, Y., Ishiguro, M., & Kitagawa, G. (1986). Akaike
information criterion statistics (p. 290). Reidel.
Schwarz, G. (1978). Estimating the dimension of a model. Annals of
Statistics, 6, 461–464.
Tierney, L., & Kadane, J. B. (1986). Accurate approximations for
posterior moments and marginal densities.
Journal of the American
Statistical Association,
81(393), 82–86.
https://doi.org/10.1080/01621459.1986.10478240
Wickham, H. (2011). The split-apply-combine strategy for data analysis.
Journal of Statistical Software,
40(1), 1–29.
https://doi.org/10.18637/jss.v040.i01