Balota, D. A., Yap, M. J., Hutchison, K. A., Cortese, M. J., Kessler, B., Loftis, B., Neely, J. H., Nelson, D. L., Simpson, G. B., & Treiman, R. (2007). The English lexicon project. Behavior Research Methods, 39(3), 445–459.
Bates, D., Maechler, M., Bolker, B. M., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48.
Bouchet-Valat, M., & Kamiński, B. (2023). DataFrames.jl: Flexible and fast tabular data in Julia. Journal of Statistical Software, 107(4), 1–32.
Box, G. E. P. (1950). Problems in the analysis of growth and wear curves. Biometrics, 6(4), 362.
Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society: Series B (Methodological), 26(2), 211–243.
Box, G. E. P., & Tiao, G. C. (1973). Bayesian inference in statistical analysis. Addison-Wesley.
Danisch, S., & Krumbiegel, J. (2021). Makie.jl: Flexible high-performance data visualization for Julia. Journal of Open Source Software, 6(65), 3349.
Davies, O. L., & Goldsmith, P. L. (Eds.). (1972). Statistical methods in research and production (4th ed.). Hafner.
Davis, C. S. (2002). Statistical methods for the analysis of repeated measurements. In Springer Texts in Statistics (pp. xxiv + 415). New York, NY: Springer.
Elston, R. C., & Grizzle, J. E. (1962). Estimation of time-response curves and their confidence bands. Biometrics, 18, 148–159.
Harper, F. M., & Konstan, J. A. (2016). The MovieLens datasets. ACM Transactions on Interactive Intelligent Systems, 5(4), 1–19.
Huq, N. M., & Cleland, J. (1990). Bangladesh fertility survey 1989 (main report). National Institute of Population Research; Training.
Kamiński, B. (2023). Julia for data analysis. Manning.
Pinheiro, J. C., & Bates, D. M. (2000). Mixed-effects models in S and S-Plus (pp. xvi + 528). New York, NY: Springer.
Powell, M. J. (2009). The BOBYQA algorithm for bound constrained optimization without derivatives. Cambridge NA Report NA2009/06, University of Cambridge, Cambridge, 26.
Rasbash, J., Browne, W., Goldstein, H., Yang, M., & Plewis, I. (2000). A user’s guide to MLwiN. Multilevel Models Project, Institute of Education, University of London.
Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods (2nd ed.). Sage.
Sakamoto, Y., Ishiguro, M., & Kitagawa, G. (1986). Akaike information criterion statistics (p. 290). Reidel.
Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.
Tierney, L., & Kadane, J. B. (1986). Accurate approximations for posterior moments and marginal densities. Journal of the American Statistical Association, 81(393), 82–86.
Wickham, H. (2011). The split-apply-combine strategy for data analysis. Journal of Statistical Software, 40(1), 1–29.

This page was rendered from git revision 05a171b .